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Abstract

The effect of suction or injection on the free convection boundary layers induced by a heated vertical plate embedded in a saturated porous
medium with an exponential decaying heat generation is studied. Similarity solutions are obtained for the governing steady laminar boundary
layer equations using Darcy and Boussinesq approximations. The plate is assumed to have a power law temperature distribution. Three distinct
cases of uniform lateral mass flux, uniform surface temperature, and uniform heat flux are studied. The effects of suction/injection parameter fw
and temperature exponent λ on the flow of heat transfer are studied. Some exact analytical results are obtained for λ = 1,−1/3. Critical values of
the suction/injection parameter are obtained for adiabatic surface as a function of the temperature exponent parameter λ.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Heated surfaces embedded in saturated porous medium have
many geophysical and engineering applications. Such applica-
tions are flow of groundwater, geothermal energy utilization,
insulation of buildings, energy storage and recovery and chem-
ical reactor engineering.

Comprehensive reviews of the convection through porous
media have reported by Nield and Bejan [1] and by Ingham
and Pop [2]. Cheng and Minkowycz [3] studied the steady free
convection about a vertical plate embedded in a porous media
using the boundary layer assumptions and Darcy model by the
similarity method. Cheng [4] extended the work of [3] by study-
ing the effect of lateral mass flux with prescribed temperature
and velocity as power law on the vertical surface. The neces-
sary and sufficient conditions, under which similarity solutions
exist for free convection boundary layers adjacent to flat plates
in porous media were reported by Johnson and Cheng [5] us-
ing a power law forms. Other investigators [6–9] studied some
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similar porous medium cases using Darcy and Boussinesq ap-
proximations with different power law velocity and temperature
variation at the boundaries. Furthermore, exact analytical solu-
tions for free convection boundary layers on a heated vertical
plate with lateral mass flux embedded in a saturated porous
medium were reported by Magyari and Keller [10]. In their
study exact analytical solutions are reported for some temper-
ature exponent index λ = 1,−1/3, and −1/2 and they found
that for λ = −1/2, solutions can only exist for suction (fw > 0)
and they referred to this condition as suction-born. A new class
of similarity solutions has obtained for isothermal vertical plate
in a semi-infinite quiescent fluid with internal heat generation
decaying exponentially by Crepeau and Clarksean [11]. Postel-
nicu and Pop [12] have used the same source function to study
the boundary layers developed by heated vertical and horizon-
tal surfaces in porous medium with power-law wall tempera-
ture distribution. Postelnicu et al. [13] extended the work of
[12] for permeable vertical surface. Free convection boundary
layer developed by a vertical flat plate in porous medium, satu-
rated with a non-Newtonian fluid with internal heat generation,
was reported by Grosan and Pop [14,15]. Furthermore, simi-
larity solution for free convection boundary layer over a non-
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Nomenclature

A constant (>0)
C specific heat of the fluid
f dimensionless stream function
fw suction/injection parameter
g acceleration due to gravity
k thermal conductivity of porous medium
K permeability of porous medium
Nux local Nusselt number
q ′′′ internal heat generation rate per unit volume
Rax modified local Rayleigh number

(gKβ(Tw − T∞)x/αν)
T temperature
u,v velocity components in x and y directions
x, y Coordinates along and normal to the plate,

respectively

Greek symbols

α the equivalent thermal diffusivity (k/ρC)
β thermal expansion coefficient
λ temperature exponent
η similarity variable
θ dimensionless temperature
ρ density
ν kinematic viscosity
ψ stream function

Subscripts

w plate condition
∞ ambient condition

Superscript
′ differentiation with respect to η
isothermal two-dimensional or axisymmetric body embedded
in a porous medium with internal heat generation is reported by
Bagai [16].

The present paper studies numerically and analytically the
effects of lateral mass flux on a heated vertical wall embedded
in a saturated porous medium with internal heat generation for
various values of temperature exponent λ.

2. Mathematical analysis

Consider the laminar steady two-dimensional motion of free
convection boundary layers flow induced by a heated vertical
plate embedded in a homogeneous porous medium of uniform
ambient temperature T∞ and with internal heat generation q ′′′
as shown in Fig. 1. The equations governing this boundary layer

Fig. 1. Schematic of the coordinate system, boundary conditions, vertical ve-
locity and temperature profiles adjacent to a permeable heated vertical surface
embedded in a saturated porous medium with internal heat generation.
flow using Darcy and Boussinesq approximations for incom-
pressible viscous fluid are [1]
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Symbols and their definitions are given in the nomenclature and
ρC is the heat capacity per unit volume of the fluid. It is also
assumed that the temperature distribution of the plate is gov-
erned by the power law Tw(x) = T∞ + Axλ , where T∞ is the
temperature at infinity and A is a constant > 0 for heated plate.

Eqs. (1)–(3) are subject to the following boundary condi-
tions:

T (x,0) = Tw(x) and v(x,0) = vw(x)

T (x,∞) = T∞ and u(x,∞) = 0 (4)

where the Cartesian coordinates x and y are measured along
the plate and normal to it respectively (see Fig. 1). Following
Postelnicu and Pop [12], if the heat generation rate is of the
form

q ′′′ = k(Tw − T∞)

x2
Raxe

−η (5)

then Eqs. (1)–(4) admit the following similarity solution
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where f , f ′, and θ are the dimensionless stream function, ver-
tical velocity, and temperature field respectively and Rax =
gKβ(Tw − T∞)x/(αν) is the modified local Rayleigh number.
Substitution in the governing equations (1)–(3) gives rise to the
following system of ordinary differential equations

f ′′ = θ ′ (7)

θ ′′ + λ + 1

2
f θ ′ − λf ′θ + e−η = 0 (8)

and are subject to the following boundary conditions:

θ(0) = 1, θ(∞) = 0 (9)

f (0) = fw, f ′(∞) = 0 (10)

The suction or injection speed vw at the wall is

vw = −
(

α

2x

)
Ra1/2

x (λ + 1)f (0) (11)

The quantity f (0) = fw is referred to as the dimensionless suc-
tion/injection parameter. Therefore, fw = zero corresponding
to an impermeable surface where the equations reduce to those
of Postelnicu and Pop [12] and of course their solutions are re-
coverable. On the other hand, if the internal heat generation is
off, the equations reduce to those of Cheng and Minkowycz [3],
and Magyari and Keller [10]. Furthermore, the plate is perme-
able with suction or injection according to fw > 0 or fw < 0
respectively.

Eq. (7) and the boundary conditions (9)–(10) yield that,
f ′(η) = θ(η) which shows [3,4,10,12] that the dimensionless
vertical velocity and temperature profiles are identical. There-
fore, according to Eqs. (7)–(11), the present problem reduces
to the solution of the following nonlinear ordinary differential
equation

f ′′′ + λ + 1

2
ff ′′ − λf ′2 + e−η = 0 (12)

subject to the boundary conditions

f ′(0) = 1, f (0) = fw, f ′(∞) = 0 (13)

Eqs. (12)–(13) are compatible with those given by [13]. The
local surface heat flux is then, given by:

qw(x) = −kA

(
gβKA

αν

)1/2

x
3λ−1

2 θ ′(0) (14)

and it can be expressed as a function of the local Rayleigh and
Nusselt numbers as

NuxRa−1/2
x = −θ ′(0) (15)

and the entrainment velocity of the fluid is given by

v(x,∞) = −
(

α

2x

)
Ra1/2

x (λ + 1)f (∞) (16)

Following Magyari and Keller [10] integrating Eq. (12) across
the boundary layer from zero to ∞ using Eq. (7) and the bound-
ary conditions (13) leads to for the dimensionless surface heat
flow
Nux

Ra1/2
x

=
(

λ + 1

2

)
fw +

(
3λ + 1

2

) ∞∫
0

f ′2(η)dη − 1

= −θ ′(0) (17)

2.1. Exact analytical solution for λ = 1 and fw = 1

The problem (7)–(10) admits the exact analytical solution

f (η) = 2 − e−η, θ(η) = e−η (18)

such that

f ′′(0) = θ ′(0) = −1 and (19)

f (∞) = 2 (20)

This case is confirmed computationally where f ′′(0) = θ ′(0) =
−0.99996 and f (∞) = 1.9997 when ηmax = 15 with a step of
0.0001.

2.2. Consequences of the integral relationship (17)

The following remarks can be observed:

First: for λ = −1/3 and fw = 0
Eq. (17) admits an exact analytic result as:

f ′′(0) = θ ′(0) = −NuxRa−1/2
x = 1 (λ = −1/3, fw = 0) (21)

This analytical result agrees very good with the computational
result obtained for this case as seen in Table 1.

Second: for λ = −1/3 one obtains for θ ′(0) and fw the explicit
relationship

θ ′(0) = 1 − 1

3
fw (λ = −1/3) (22)

Third: Since the integral in (17) is always positive, one can con-
clude the following inequality for λ �= −1/3

1 − λ+1
2 fw − θ ′(0)

3λ + 1
> 0 (λ �= −1/3) (23)

Therefore, from Eq. (23) one can obtains that

θ ′(0) < 1 − λ + 1

2
fw for λ > −1/3 (24)

and

θ ′(0) > 1 − λ + 1

2
fw for λ < −1/3 (25)

respectively.

Fourth: The adiabatic surface (θ ′(0) = 0) condition

Table 1
Comparison with the previously published results for impermeable heated ver-
tical plate embedded in porous medium with internal heat generation q ′′′

λ f ′′(0) = θ ′(0) = −NuxRa−1/2
x

Postelnicu and Pop [12] Bagai [16] Present results

−1/3 0.99961 – 1.000501
−1/4 0.67917 – 0.67985

0 0.21524 0.21524 0.21566
1/3 −0.11415 −0.11415 −0.114075
1 −0.52409 −0.52409 −0.523878
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Table 2
Critical values of the suction/injection parameter (fw)c where the surface is
adiabatic for various values of λ showing the temperature gradients at the sur-
face θ ′(0) that are almost zero

λ (fw)c θ ′(0) = −NuxRa−1/2
x

−0.5 4.95214 0.0000039
−1/3 3.0000 0.0000954
−0.25 2.32415 0.0000077

0 0.86793 0.0000069
0.15 0.20464 0.0000072
1/3 −0.5441 0.0000042
0.5 −1.2945 0.0000088

The adiabatic surface case can be realized as follows:

• only for fw = 3 when λ = −1/3 as a result of Eq. (22)
(26)

• only for a certain fw < 2/(λ + 1) when λ > −1/3 (from
Eq. (24)) (27)

• only for a certain fw > 2/(λ + 1) when −1 < λ < −1/3
(from Eq. (25)) (28)

The adiabatic surface conditions are calculated computationally
and checked with the above three conditions as seen in Table 2.

3. Numerical solution procedure

The nonlinear equation (12) subject to the boundary con-
ditions (13) is solved numerically by using the fourth order
Runge–Kutta method. Solutions are obtained for different val-
ues of fw for constant temperature exponent λ. Computations
were started from a known solution for fw = zero with internal
heat generation following Postelnicu and Pop [12] or for zero
heat generation following Cheng [4] and Magyari and Keller

Table 3
Comparison with the previously published results for heated vertical plate em-
bedded in porous medium for λ = 1 with lateral mass flux and no heat genera-
tion

fw f ′′(0) = θ ′(0) = −NuxRa−1/2
x

Magyari and Keller [10] Cheng [4] Present results

−1.0 −0.6180 −0.6180 −0.61803
−0.8 −0.6770 −0.6770 −0.67703
−0.4 −0.8198 −0.8198 −0.81980

0.0 −1.0000 −1.0000 −1.00000
1.0 −1.6180 −1.6180 −1.61803
[10]. For a given value of fw, at constant λ, the value of f ′′(0)

is estimated and the differential equation (12) is integrated until
the boundary condition at infinity f ′(∞) is satisfied by decay-
ing exponentially to zero. If the boundary condition at infinity
is not satisfied then the numerical routine uses a half interval
method to calculate corrections to the estimated value of f ′′(0).
The value of ηmax was chosen as large as possible depending
on the dimensionless suction/injection parameter fw without
causing numerical oscillations in the values of f ′. Comparisons
were made with Postelnicu and Pop [12] and Bagai [16] for im-
permeable plate with heat generation in Table 1 and with Cheng
[4] and Magyari and Keller [10] for permeable plate with no
heat generation in Table 3 for λ = 1, which show good agree-
ments. Good comparisons were also obtained with Postelnicu
et al. [13] for permeable surface with heat generation as seen in
Table 4.

4. Results and discussion

The governing equation (12) subject to the boundary condi-
tions (13) is integrated as described in Section 3. Solutions are
obtained for three distinct values of the temperature exponent
parameter λ = 0,1, and 1/3 which corresponding to isother-
mal plate, uniform lateral mass flux at the plate, and uniform
heat flux independent of x but surface temperature gradient de-
pendent only respectively. However, other values of λ are also
considered such as λ = −0.5,−0.25,1/2, and −1/3 to com-
plete the picture of the problem.

Fig. 2 shows the velocity f ′(η) or temperature θ(η) profiles
across the boundary layers for λ = 0 and different values of the
suction/injection parameter fw. As mentioned earlier suction
corresponding to fw > 0, injection to fw < 0, and fw = 0 to
impermeable plate, therefore it is clear that suction reduces the
boundary layer thickness sharply as seen for fw = 50 while in-
jection increases it as for fw = −2. It should be mentioned that
the critical value where the surface is almost adiabatic is oc-
curred at (fw)c = 0.86793 as given in Table 2. Furthermore, for
any fw > (fw)c (suction) the surface heat flow is always posi-
tive and it is directed from the plate to the porous medium. On
the other hand, the opposite is true for fw < (fw)c where heat
is transferred from the porous medium to the plate.

The uniform lateral mass flux case (λ = 1) presented by
Eq. (11) using the definition of Rayleigh number where vw
is uniform along the plate (not function of x but fw depen-
dent only) is shown in Fig. 3. In this figure, the surface heat
flow is always positive regardless of the sign of fw where the
Table 4
Comparison with the previously published results for permeable heated vertical plate embedded in porous medium with internal heat generation q ′′′

fw f ′′(0) = θ ′(0) = −NuxRa−1/2
x

λ = 0 λ = 1/3 λ = 1.0

Present results Postelnicu et al. [13] Present results Postelnicu et al. [13] Present results Postelnicu et al. [13]

−1.0 0.3658 0.3654 0.06636 0.0662 −0.2550 −0.2550
−0.6 0.3184 0.3182 0.0095 0.0094 −0.3407 −0.3407

0.6 0.0744 0.0742 −0.2869 −0.2869 −0.7837 −0.7837
1.0 −0.0387 −0.0391 −0.4288 −0.4289 −0.9999 1.0000
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Fig. 2. Vertical velocity or temperature profiles for uniform wall temperature
(λ = 0) for different values of suction/injection fw.

Fig. 3. Vertical velocity or temperature profiles for uniform lateral mass flux
(λ = 1) for different values of suction/injection fw.

heat is directed from the plate to the porous medium. Conse-
quently, the boundary layer thickness decreases as fw increases.
It should be mentioned that the case of fw = 1 which is ob-
tained analytically by Eqs. (18)–(20) is confirmed here as men-
tioned earlier. On the other hand, the uniform heat flux case
obtained by Eq. (14) for λ = 1/3 where qw is not function of
x is demonstrated in Fig. 4 in terms of the temperature pro-
file for various fw. As in the previous figures the boundary
layer thickness decreases as fw increases and the surface heat
transfer is directed from the surface to the convecting fluid for
fw > (fw)c = −0.5441, where at this critical value the surface
is adiabatic. However, for fw < (fw)c heat is directed towards
the surface from the porous medium. Furthermore, the inequal-
ity (24) is satisfied as well as in the previous Figs. 2 and 3 since
λ > −1/3. It should be noted that, other critical values corre-
Fig. 4. Vertical velocity or temperature profiles for uniform heat flux (λ = 1/3)
for different values of suction/injection fw.

Fig. 5. Vertical velocity or temperature profiles for λ = −1/3 for different val-
ues of suction/injection fw. fw = 3.0 corresponds to adiabatic and frictionless
(f ′′(0) = θ ′(0) = 0) slipping of the fluid along the wall.

sponding to different values of λ are reported in Table 2 and
plotted in Fig. 7.

Other interesting values to show the effect of suction or
injection on the temperature profiles across the boundary lay-
ers for λ = −1/3 are reported in Fig. 5. In this figure for
fw > (fw)c = 3.0 heat is transferred from the wall to the porous
medium and for fw < (fw)c, heat is reversed and transferred to
the wall from the porous medium. It should be noted that the
adiabatic condition in this case no longer occurs at fw = 0 due
to the internal heat generation included in the present analy-
sis. Furthermore, The changes in the temperature profiles are
marked by the occurrence of a hill for fw < (fw)c. As fw

decreases from (fw)c to −∞, the height of the hill (velocity
overshoot) approaches infinity similar to the case of no heat
generation (see Magyari and Keller [10]). Also here the analyt-
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Fig. 6. Dimensionless shear stress or temperature gradients at the wall for dif-
ferent λ showing the case of λ = − 1

2 where the solution does not exist as fw
approaches zero.

ical conditions (21) and (22) are confirmed as seen in Table 1
and 2 for fw = 0 and 3, respectively.

The temperature gradients at the surface θ ′(0) are plotted
against fw in Fig. 6 for various values of λ. It is clear that,
for fw > 0 (suction) the temperature gradient at the surface
increases as λ decreases and from Eq. (15) one can see that
NuxRa−1/2

x has an opposite sense in other words, it increases
with increasing λ. It is interesting here to observe that for
λ = −1/2 as fw approaches zero there is no solution can be
obtained and this observation agrees with that of impermeable
wall by Ingham and Brown [9] and by Magyari and Keller [10]
for no heat generation. However, as fw increases (suction) the
solution can be obtained and it was called “suction-born” flow
[10]. Furthermore, for this kind of boundary layer flow the adi-
abatic wall condition occurs at fw = (fw)c = 4.95214 and for
fw > (fw)c heat is transferred from the surface to the porous
medium whereas for (fw)c > fw � 0.2 the surface heat flow is
reversed. It should be noted that, for λ = −1/2 the analytical
inequality (25) is satisfied and confirmed computationally.

Fig. 7 summarizes the heat transfer flow where (fw)c is plot-
ted verses λ. In this figure, above the solid curve (fw > (fw)c)

heat is transferred from the plate to the porous medium where
θ ′(0) is negative and NuxRa−1/2

x is positive (direct heat flow).
However, below the curve (fw < (fw)c) heat is transferred from
the porous medium to the plate where θ ′(0) is positive and
NuxRa−1/2

x is negative (reversed heat flow). Furthermore, on the
solid line (fw = (fw)c) the temperature gradient at the surface
θ ′(0) = 0 where the surface is adiabatic according to Table 2.
According to Eq. (14) the heat flux is vanishing for θ ′(0) = 0
in every point of the surface except for the leading edge singu-
larity at x = 0 where the heat responsible for the temperature
field is released by this singularity. It should be noted, that the
coordinates of the points in Fig. 7 are given in Table 2 and the
polynomial fitting curve through the points is given by (using
Golden Software Grapher)
Fig. 7. Critical values of the suction/injection parameter (fw)c where the sur-
face is adiabatic. Table 3 gives the point coordinates, while Eq. (29) gives the
fitting curve.

(fw)c = 0.846 − 4.705λ + 3.867λ2 − 6.134λ3

0.5 � λ � −0.5 (29)

where the polynomial correlation coefficient is 99.97%. Finally,
it should be observed from Fig. 7 and Table 2 that for λ = −1/3,
> −1/3 and < −1/3 the analytical conditions obtained by (26),
(27), and (28) are satisfied respectively.

5. Conclusions

Similarity solutions are obtained for the governing equa-
tions (12)–(13). Special cases are considered for the plate tem-
perature exponent λ with lateral mass flux controlled by the
suction/injection parameter fw. The case λ = 0 corresponds to
a uniform surface temperature where heat is transferred from
the plate to the convecting fluid for fw < 0.86793 while for
fw > 0.86793 heat is reversed and transferred from the porous
medium to the plate. The uniform lateral mass flux is presented
by λ = 1 where for all 50.0 � fw � −1.0 heat is transferred
in a direct way from the plate to the medium with positive
NuxRa−1/2

x or negative temperature gradient at the wall. Fur-
thermore, λ = 1/3 corresponding to uniform heat flux at the
plate independent of x but temperature gradient at the wall de-
pendant only, where the adiabatic surface condition occurs at
(fw)c = −0.5441. Moreover, solutions for λ = −1/3 show that
as the injection strength increases the temperature profile has
a hill (velocity overshoot) where the heat flow is directed in a
reverse way. On the other hand, λ = − 1

2 corresponds to simi-
lar boundary flow, which only exist for suction case (fw > 0.2)
and as fw approaches zero no solutions are obtained similar to
the case with no heat generation reported by [10]. Analytical
solutions and conditions obtained in Sections 2.1 and 2.2 for
different values of λ are confirmed computationally. Finally,
in all cases, boundary layer thickness reduces by suction and
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increases by injection with critical plate adiabatic conditions
given in Table 2.
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